the application of multi-layer artificial neural networks in speckle reduction (methodology)
Authors
abstract
optical coherence tomography (oct) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. an inherent characteristic of coherent imaging is the presence of speckle noise. in this study we use a new ensemble framework which is a combination of several multi-layer perceptron (mlp) neural networks to denoise oct images. the noise is modeled using rayleigh distribution with the noise parameter, sigma, estimated by the ensemble framework. the input to the framework is a set of intensity and wavelet statistical features computed from the input image, and the output is the estimated sigma value for the noise model. in this article the methodology of this technique is explained.
similar resources
The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
full textFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
full textThe Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit
Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs) provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, a...
full textArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
full textArtificial neural networks: applications in pain physiology
Artificial neural networks (ANNs) are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the capability of ANN in predicting body behavior in pain-producing situations is evaluated. A three-layer back-propagation ANN is designed using MATLAB software. The inputs include the magnitude of stimulation in pain fibers, touch fibers and cen...
full textApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
full textMy Resources
Save resource for easier access later
Journal title:
journal of electrical and computer engineering innovationsPublisher: shahid rajaee teacher training university (srttu)
ISSN 2322-3952
volume 2
issue 1 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023